1. a = 1 হ'লে তলৰ বীজগণিতীয় ৰাশিবোৰৰ মান নিৰ্ণয় কৰাঃ
(i) 2a + 1
(ii) a^2 - 2a + 1
(iii) a + 3 / 4
(iv) 1/2.a - 4
(v) a^3 + a ^2 + a + 1
সমাধানঃ
(i) 2a + 1
= 2(1) + 1
= 2 + 1
= 3
(ii) a^2 - 2a + 1
= (1)^2 - 2 ( 1) + 1
= 1 - 2 + 1
= 2 - 2
= 0
(iii) a + 3 / 4
= 1 + 3/4
= 4 + 3 / 4
= 7/4
(iv) 1/2.a - 4
= 1/2 . 1 - 4
= 1/2 - 4
=1-8/2
= -7/2
(v) a^3 + a ^2 + a + 1
= 1^3 + 1^2 + 1 + 1
= 1 + 1 + 1 + 1
= 4
2. x = -3 হ'লে তলৰ বীজগণিতীয় ৰাশিবোৰৰ মান নিৰ্ণয় কৰাঃ
(i) -x^2 + 4x + 3
(ii) 2x^2 + x + 3
(iii) X^3 - x^2 + 1
(iv) 3x + 1
(v) x/3 + 2/3
সমাধানঃ যদি x = -3 , তেন্তে
(i) -x^2 + 4x + 3
= -(-3)^2 + 4 ( -3) + 3
= -9 - 12 + 3
= -21 + 3
= -18
(ii) 2x^2 + x + 3
= 2(-3)^2 + (-3) + 3
= 2(9) - 3 + 3
= 18 -0
= 18
(iii) X^3 - x^2 + 1
= (-3)^3 - (-3)^2 + 1
= -27 - 9 + 1
= -36 + 1
= -35
(iv) 3x + 1
= 3(-3) + 1
= -9 + 1
= -8
(v) x/3 + 2/3
= (-3)/3 + 2/3
= -1 + 2/3
= -3 + 2/3
= -1/3
3. x = 1 হ'লে আৰু y = -1 হ'লে তলত দিয়া বীজগণিতীয় ৰাশিবোৰৰ মান নিৰ্ণয় কৰাঃ
(i) x^2 + xy + y^2
(ii) x^2 + y^2
(iii) x^2 - y^2
(iv) x^2 + y + 1
(v) 3x + y
(vi) x^2 + xy + x
সমাধানঃ যদি x = 1 হ'লে আৰু y = -1 হ'লে
(i) x^2 + xy + y^2
= 1^2 + 1(-1) + (-1)^2
= 1 - 1 + 1
= 0 + 1
= 1
(ii) x^2 + y^2
= 1^2 + (-1)^2
= 1 + 1
= 2
(iii) x^2 - y^2
= 1^2 - ( -1)^2
= 1 - 1
= 0
(iv) x^2 + y + 1
= 1^2 + (-1) + 1
= 1 - 1 + 1
= 0 + 1
= 1
(v) 3x + y
= 3(1) + (-1)
= 3 - 1
= 2
(vi) x^2 + xy + x
= 1^2 + 1(-1) + 1
= 1 - 1 + 1
= 0 + 1
= 1
4. তলৰ ৰাশিসমূহ সৰল কৰা আৰু x = -2 ৰ বাবে মান নিৰ্ণয় কৰাঃ
(i) x^2 + x + 7 + x + x^2 - 1
(ii) 3(x + 4 ) + 2x + 1
(iii) 3x - ( 2x - 1)
(iv) ( x^2 + x ) - ( 2x^2 - x + 1 )
(v) x^3 + 2x^2 - x + 2x^2 + 2x + 1
(vi) x^3 - 4(x - 5 )
সমাধানঃ যদি x = -2 হ'লে
(i) x^2 + x + 7 + x + x^2 - 1
= x^2 + x^2 + x + x + 7 - 1
= 2x^2 + 2x + 6
= 2(-2)^2 + 2(-2) + 6
= 2(4) - 4 + 6
= 8 + 2
= 10
(ii) 3(x + 4 ) + 2x + 1
= 3x + 12 + 2x + 1
= 3x + 2x + 12 + 1
= 5x + 13
= 5(-2) + 13
= -10 + 13
= 3
(iii) 3x - ( 2x - 1)
= 3x - 2x + 1
= x + 1
= (-2) + 1
= -2 + 1
= -1
(iv) ( x^2 + x ) - ( 2x^2 - x + 1 )
= x^2 + x - 2x^2 + x - 1
= x^2 - 2x^2 + x + x -1
= -x^2 + 2x -1
= -(-2)^2 + 2(-2) - 1
= -4 - 4 - 1
= -8 - 1
= -9
(v) x^3 + 2x^2 - x + 2x^2 + 2x + 1
= x^3 + 2x^2 + 2x^2 -x + 2x + 1
= x^3 + 4x^2 + x + 1
= (-2)^3 + 4(-2)^2 + (-2) + 1
= -8 + 4(4) -2 + 1
= -8 + 16 -1
= 8 - 1
= 7
(vi) x^3 - 4(x - 5 )
= x^3 - 4x + 20
= (-2)^3 - 4(-2) + 20
= -8 + 8 + 20
= 0 + 20
= 20
5. তলৰ ৰাশিসমূহ সৰল কৰা আৰু মান নিৰ্ণয় কৰা যদি x = 2 , y = -3 আৰু z = -1 হয়
(i) 2x + y - z + 3x - 2y + z
(ii) xy + yz + 2x
(iii) 2x^2 + xy^z + 3xyz + 6x^2y-2xy^2z - 6xyz
(iv) 5 -3x + 2y - 7x + 6y + 2 + z
(v) (2x + y + z ) - ( z - 3y ) + ( 2 + x ) - ( 5 - z )
সমাধানঃ যদি x = 2 , y = -3 আৰু z = -1 হয়, তেন্তে
(i) 2x + y - z + 3x - 2y + z
= 2x + 3x + y - 2y -z + z
= 5x - y
= 5 x 2 -(-3)
= 10 + 3
= 13
(ii) xy + yz + 2x
= 2(-3) + (-3)(-1) +2(2)
= -6 + 3 + 4
= -6 + 7
= 1
(iii) 2x^2 + xy^2z + 3xyz + 6x^2y -2xy^2z - 6xyz
= 2x^2y + 6x^2y + xy^2z-2xy^2z + 3xyz - 6xyz
= 8x^2y - xy^2z - 3xyz
= 8(2)^2(-3) - (2)(-3)^2(-1) - 3(2)(-3)(-1)
= 8(4)(-3) - 2(9)(-1) - 18
= -96 + 18 -18
= -96
(iv) 5 -3x + 2y - 7x + 6y + 2 + z
= 5 + 2 - 3x - 7x + 2y + 6y + z
= 7 - 10x + 8y + z
= 7 - 10(2) + 8(-3) + (-1)
= 7 - 20 - 24 -1
= -13 - 25
= -38 //
(v) (2x + y + z ) - ( z - 3y ) + ( 2 + x ) - ( 5 - z )
= 2x + y + z - z + 3y + 2 + x - 5 + z
= 2x + x + y + 3y + z - z + z +2 - 5
= 3x + 4y + z - 3
= 3(2) + 4 ( -3) + (-1) -3
= 6 - 12 -1 -3
= -6 -4
= -10 //
6. x = 0 ৰ বাবে যদি x^2 + 2x - p + 1 ৰ মান 6 হয় তেন্তে p ৰ মান নিৰ্ণয় কৰা ৷
সমাধানঃ ইয়াত , x = 0
x^2 + 2x - p + 1 = 6
=> 0^2 + 2.0 - p + 1 = 6
=> - p + 1 = 6
=> -p = 6 - 1
=> -p = 5
=> p = -5 //
Please don't use spam link in the comment box.